description:The plant carotenoid (Car) content plays a crucial role in the xanthophyll cycle and provides essential information on the physiological adaptations of plants to environmental stress. Spectroscopy data are essential for the nondestructive prediction of Car and other traits. However, Car content estimation is still behind in terms of accuracy compared to other pigments, such as chlorophyll (Chl). Here, I examined the potential of using the continuous wavelet transform (CWT) on leaf reflectance data to create vegetation indices (VIs). I compared six CWT mother families and six scales and selected the best overall dataset using random forest (RF) regressions. Using a brute-force approach, I created wavelet-based VIs on the best mother family and compared them against established Car reflectance-based VIs. I found that wavelet-based indices have high linear sensitivity to the Car content, contrary to typical nonlinear relationships depicted by the reflectance-based VIs. These relations were theoretically contrasted with the synthetic data created using the PROSPECT-D radiative transfer model. However, the best selection of wavelength bands in wavelet-based VIs varies greatly depending on the spectral characteristics of the input data before the transformation.~~language::en||description: El contenido de carotenoides (Car) de las plantas juega un papel crucial en el ciclo de las xantofilas y proporciona información esencial sobre las adaptaciones fisiológicas de las plantas al estrés ambiental. Los datos de espectroscopia son esenciales para la predicción no destructiva de Car y otros rasgos. Sin embargo, la estimación del contenido de Car aún está por detrás en términos de precisión en comparación con otros pigmentos, como la clorofila (Chl). Aquí, examiné el potencial de utilizar la transformada wavelet continua (CWT) en datos de reflectancia de hojas para crear índices de vegetación (VI). Comparé seis familias madre de CWT y seis escalas y seleccioné el mejor conjunto de datos general utilizando regresiones de bosque aleatorio (RF). Utilizando un enfoque de fuerza bruta, creé VI basados en wavelets en la mejor familia madre y los comparé con VI establecidos basados en la reflectancia del automóvil. Descubrí que los índices basados en wavelets tienen una alta sensibilidad lineal al contenido de Car, contrariamente a las relaciones no lineales típicas representadas por los VI basados en reflectancia. Estas relaciones se contrastaron teóricamente con los datos sintéticos creados utilizando el modelo de transferencia radiativa PROSPECT-D. Sin embargo, la mejor selección de bandas de longitud de onda en VI basados en wavelets varía mucho dependiendo de las características espectrales de los datos de entrada antes de la transformación. ~~language::es