Changes
On November 2, 2023 at 7:40:56 PM UTC, admin:
-
Changed value of field
formats
toformat:pdf
(previouslyformat:.pdf
) in Estimation of Foliar Carotenoid Content Using Spectroscopy Wavelet-Based Vegetation Indices
f | 1 | { | f | 1 | { |
2 | "author": "name:Lopatin, Javier~~creator_name_type::tba", | 2 | "author": "name:Lopatin, Javier~~creator_name_type::tba", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "creator_user_id": "d5b810eb-d375-4f74-b86f-92d03daa9f84", | 4 | "creator_user_id": "d5b810eb-d375-4f74-b86f-92d03daa9f84", | ||
5 | "extras": [ | 5 | "extras": [ | ||
6 | { | 6 | { | ||
7 | "key": "alternate_identifiers", | 7 | "key": "alternate_identifiers", | ||
8 | "value": "" | 8 | "value": "" | ||
9 | }, | 9 | }, | ||
10 | { | 10 | { | ||
11 | "key": "dates", | 11 | "key": "dates", | ||
12 | "value": "date:2023-01-16~~date_information::unkn" | 12 | "value": "date:2023-01-16~~date_information::unkn" | ||
13 | }, | 13 | }, | ||
14 | { | 14 | { | ||
15 | "key": "formats", | 15 | "key": "formats", | ||
n | 16 | "value": "format:.pdf" | n | 16 | "value": "format:pdf" |
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "key": "funding_references", | 19 | "key": "funding_references", | ||
20 | "value": "" | 20 | "value": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "key": "geo_locations", | 23 | "key": "geo_locations", | ||
24 | "value": "" | 24 | "value": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "key": "related_identifiers", | 27 | "key": "related_identifiers", | ||
28 | "value": "" | 28 | "value": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "key": "sizes", | 31 | "key": "sizes", | ||
32 | "value": "size:-1~~unit:pages" | 32 | "value": "size:-1~~unit:pages" | ||
33 | }, | 33 | }, | ||
34 | { | 34 | { | ||
35 | "key": "subjects", | 35 | "key": "subjects", | ||
36 | "value": "subject_scheme:Continuous wavelet transforms; CWT | 36 | "value": "subject_scheme:Continuous wavelet transforms; CWT | ||
37 | mother families~~value_uri::unkn" | 37 | mother families~~value_uri::unkn" | ||
38 | }, | 38 | }, | ||
39 | { | 39 | { | ||
40 | "key": "titles", | 40 | "key": "titles", | ||
41 | "value": "name:Estimation of Foliar Carotenoid Content Using | 41 | "value": "name:Estimation of Foliar Carotenoid Content Using | ||
42 | Spectroscopy Wavelet-Based Vegetation | 42 | Spectroscopy Wavelet-Based Vegetation | ||
43 | Indices~~title_type::unkn~~language::en||name:Estimaci\u00f3n del | 43 | Indices~~title_type::unkn~~language::en||name:Estimaci\u00f3n del | ||
44 | contenido de carotenoides foliares mediante \u00edndices de | 44 | contenido de carotenoides foliares mediante \u00edndices de | ||
45 | vegetaci\u00f3n basados \u200b\u200ben ondas | 45 | vegetaci\u00f3n basados \u200b\u200ben ondas | ||
46 | espectrosc\u00f3picas~~title_type::unkn~~language::es" | 46 | espectrosc\u00f3picas~~title_type::unkn~~language::es" | ||
47 | } | 47 | } | ||
48 | ], | 48 | ], | ||
49 | "groups": [ | 49 | "groups": [ | ||
50 | { | 50 | { | ||
51 | "description": "", | 51 | "description": "", | ||
52 | "display_name": "Medio Ambiente", | 52 | "display_name": "Medio Ambiente", | ||
53 | "id": "b964b2f4-dc03-40fc-b2a3-bf8c6362fd29", | 53 | "id": "b964b2f4-dc03-40fc-b2a3-bf8c6362fd29", | ||
54 | "image_display_url": | 54 | "image_display_url": | ||
55 | ://dataobservatory.net/images/categories/500x500-medio-ambiente.webp", | 55 | ://dataobservatory.net/images/categories/500x500-medio-ambiente.webp", | ||
56 | "name": "medio-ambiente", | 56 | "name": "medio-ambiente", | ||
57 | "title": "Medio Ambiente" | 57 | "title": "Medio Ambiente" | ||
58 | }, | 58 | }, | ||
59 | { | 59 | { | ||
60 | "description": "", | 60 | "description": "", | ||
61 | "display_name": "Observaci\u00f3n de la Tierra", | 61 | "display_name": "Observaci\u00f3n de la Tierra", | ||
62 | "id": "f1db6d41-28da-4f0f-9f35-1b9f8004b0ee", | 62 | "id": "f1db6d41-28da-4f0f-9f35-1b9f8004b0ee", | ||
63 | "image_display_url": | 63 | "image_display_url": | ||
64 | ataobservatory.net/images/categories/500x500-observacion-tierra.webp", | 64 | ataobservatory.net/images/categories/500x500-observacion-tierra.webp", | ||
65 | "name": "observacion-de-la-tierra", | 65 | "name": "observacion-de-la-tierra", | ||
66 | "title": "Observaci\u00f3n de la Tierra" | 66 | "title": "Observaci\u00f3n de la Tierra" | ||
67 | } | 67 | } | ||
68 | ], | 68 | ], | ||
69 | "id": "4d43f20c-19b8-4a13-b9b0-76dce6d2fd38", | 69 | "id": "4d43f20c-19b8-4a13-b9b0-76dce6d2fd38", | ||
70 | "isopen": false, | 70 | "isopen": false, | ||
71 | "license_id": "rights:CC-BY", | 71 | "license_id": "rights:CC-BY", | ||
72 | "license_title": "rights:CC-BY", | 72 | "license_title": "rights:CC-BY", | ||
73 | "maintainer": "name:Lopatin, Javier~~creator_name_type::tba", | 73 | "maintainer": "name:Lopatin, Javier~~creator_name_type::tba", | ||
74 | "maintainer_email": "do-catalog@dataobservatory.net", | 74 | "maintainer_email": "do-catalog@dataobservatory.net", | ||
75 | "metadata_created": "2023-06-09T16:16:56.535770", | 75 | "metadata_created": "2023-06-09T16:16:56.535770", | ||
t | 76 | "metadata_modified": "2023-10-31T20:16:29.286676", | t | 76 | "metadata_modified": "2023-11-02T19:40:56.856593", |
77 | "name": | 77 | "name": | ||
78 | arotenoid_content_using_spectroscopy_waveletbased_vegetation_indices", | 78 | arotenoid_content_using_spectroscopy_waveletbased_vegetation_indices", | ||
79 | "notes": "description:The plant carotenoid (Car) content plays a | 79 | "notes": "description:The plant carotenoid (Car) content plays a | ||
80 | crucial role in the xanthophyll cycle and provides essential | 80 | crucial role in the xanthophyll cycle and provides essential | ||
81 | information on the physiological adaptations of plants to | 81 | information on the physiological adaptations of plants to | ||
82 | environmental stress. Spectroscopy data are essential for the | 82 | environmental stress. Spectroscopy data are essential for the | ||
83 | nondestructive prediction of Car and other traits. However, Car | 83 | nondestructive prediction of Car and other traits. However, Car | ||
84 | content estimation is still behind in terms of accuracy compared to | 84 | content estimation is still behind in terms of accuracy compared to | ||
85 | other pigments, such as chlorophyll (Chl). Here, I examined the | 85 | other pigments, such as chlorophyll (Chl). Here, I examined the | ||
86 | potential of using the continuous wavelet transform (CWT) on leaf | 86 | potential of using the continuous wavelet transform (CWT) on leaf | ||
87 | reflectance data to create vegetation indices (VIs). I compared six | 87 | reflectance data to create vegetation indices (VIs). I compared six | ||
88 | CWT mother families and six scales and selected the best overall | 88 | CWT mother families and six scales and selected the best overall | ||
89 | dataset using random forest (RF) regressions. Using a brute-force | 89 | dataset using random forest (RF) regressions. Using a brute-force | ||
90 | approach, I created wavelet-based VIs on the best mother family and | 90 | approach, I created wavelet-based VIs on the best mother family and | ||
91 | compared them against established Car reflectance-based VIs. I found | 91 | compared them against established Car reflectance-based VIs. I found | ||
92 | that wavelet-based indices have high linear sensitivity to the Car | 92 | that wavelet-based indices have high linear sensitivity to the Car | ||
93 | content, contrary to typical nonlinear relationships depicted by the | 93 | content, contrary to typical nonlinear relationships depicted by the | ||
94 | reflectance-based VIs. These relations were theoretically contrasted | 94 | reflectance-based VIs. These relations were theoretically contrasted | ||
95 | with the synthetic data created using the PROSPECT-D radiative | 95 | with the synthetic data created using the PROSPECT-D radiative | ||
96 | transfer model. However, the best selection of wavelength bands in | 96 | transfer model. However, the best selection of wavelength bands in | ||
97 | wavelet-based VIs varies greatly depending on the spectral | 97 | wavelet-based VIs varies greatly depending on the spectral | ||
98 | characteristics of the input data before the | 98 | characteristics of the input data before the | ||
99 | transformation.~~language::en||description: El contenido de | 99 | transformation.~~language::en||description: El contenido de | ||
100 | carotenoides (Car) de las plantas juega un papel crucial en el ciclo | 100 | carotenoides (Car) de las plantas juega un papel crucial en el ciclo | ||
101 | de las xantofilas y proporciona informaci\u00f3n esencial sobre las | 101 | de las xantofilas y proporciona informaci\u00f3n esencial sobre las | ||
102 | adaptaciones fisiol\u00f3gicas de las plantas al estr\u00e9s | 102 | adaptaciones fisiol\u00f3gicas de las plantas al estr\u00e9s | ||
103 | ambiental. Los datos de espectroscopia son esenciales para la | 103 | ambiental. Los datos de espectroscopia son esenciales para la | ||
104 | predicci\u00f3n no destructiva de Car y otros rasgos. Sin embargo, la | 104 | predicci\u00f3n no destructiva de Car y otros rasgos. Sin embargo, la | ||
105 | estimaci\u00f3n del contenido de Car a\u00fan est\u00e1 por | 105 | estimaci\u00f3n del contenido de Car a\u00fan est\u00e1 por | ||
106 | detr\u00e1s en t\u00e9rminos de precisi\u00f3n en comparaci\u00f3n con | 106 | detr\u00e1s en t\u00e9rminos de precisi\u00f3n en comparaci\u00f3n con | ||
107 | otros pigmentos, como la clorofila (Chl). Aqu\u00ed, examin\u00e9 el | 107 | otros pigmentos, como la clorofila (Chl). Aqu\u00ed, examin\u00e9 el | ||
108 | potencial de utilizar la transformada wavelet continua (CWT) en datos | 108 | potencial de utilizar la transformada wavelet continua (CWT) en datos | ||
109 | de reflectancia de hojas para crear \u00edndices de vegetaci\u00f3n | 109 | de reflectancia de hojas para crear \u00edndices de vegetaci\u00f3n | ||
110 | (VI). Compar\u00e9 seis familias madre de CWT y seis escalas y | 110 | (VI). Compar\u00e9 seis familias madre de CWT y seis escalas y | ||
111 | seleccion\u00e9 el mejor conjunto de datos general utilizando | 111 | seleccion\u00e9 el mejor conjunto de datos general utilizando | ||
112 | regresiones de bosque aleatorio (RF). Utilizando un enfoque de fuerza | 112 | regresiones de bosque aleatorio (RF). Utilizando un enfoque de fuerza | ||
113 | bruta, cre\u00e9 VI basados \u200b\u200ben wavelets en la mejor | 113 | bruta, cre\u00e9 VI basados \u200b\u200ben wavelets en la mejor | ||
114 | familia madre y los compar\u00e9 con VI establecidos basados | 114 | familia madre y los compar\u00e9 con VI establecidos basados | ||
115 | \u200b\u200ben la reflectancia del autom\u00f3vil. Descubr\u00ed que | 115 | \u200b\u200ben la reflectancia del autom\u00f3vil. Descubr\u00ed que | ||
116 | los \u00edndices basados \u200b\u200ben wavelets tienen una alta | 116 | los \u00edndices basados \u200b\u200ben wavelets tienen una alta | ||
117 | sensibilidad lineal al contenido de Car, contrariamente a las | 117 | sensibilidad lineal al contenido de Car, contrariamente a las | ||
118 | relaciones no lineales t\u00edpicas representadas por los VI basados | 118 | relaciones no lineales t\u00edpicas representadas por los VI basados | ||
119 | \u200b\u200ben reflectancia. Estas relaciones se contrastaron | 119 | \u200b\u200ben reflectancia. Estas relaciones se contrastaron | ||
120 | te\u00f3ricamente con los datos sint\u00e9ticos creados utilizando el | 120 | te\u00f3ricamente con los datos sint\u00e9ticos creados utilizando el | ||
121 | modelo de transferencia radiativa PROSPECT-D. Sin embargo, la mejor | 121 | modelo de transferencia radiativa PROSPECT-D. Sin embargo, la mejor | ||
122 | selecci\u00f3n de bandas de longitud de onda en VI basados | 122 | selecci\u00f3n de bandas de longitud de onda en VI basados | ||
123 | \u200b\u200ben wavelets var\u00eda mucho dependiendo de las | 123 | \u200b\u200ben wavelets var\u00eda mucho dependiendo de las | ||
124 | caracter\u00edsticas espectrales de los datos de entrada antes de la | 124 | caracter\u00edsticas espectrales de los datos de entrada antes de la | ||
125 | transformaci\u00f3n. ~~language::es", | 125 | transformaci\u00f3n. ~~language::es", | ||
126 | "num_resources": 1, | 126 | "num_resources": 1, | ||
127 | "num_tags": 0, | 127 | "num_tags": 0, | ||
128 | "organization": { | 128 | "organization": { | ||
129 | "approval_status": "approved", | 129 | "approval_status": "approved", | ||
130 | "created": "2023-02-22T14:41:33.910697", | 130 | "created": "2023-02-22T14:41:33.910697", | ||
131 | "description": "", | 131 | "description": "", | ||
132 | "id": "af066186-a0e3-486a-9c7a-d5450fb9a09a", | 132 | "id": "af066186-a0e3-486a-9c7a-d5450fb9a09a", | ||
133 | "image_url": "https://dataobservatory.net/images/do.png", | 133 | "image_url": "https://dataobservatory.net/images/do.png", | ||
134 | "is_organization": true, | 134 | "is_organization": true, | ||
135 | "name": "data-observatory", | 135 | "name": "data-observatory", | ||
136 | "state": "active", | 136 | "state": "active", | ||
137 | "title": "Data Observatory", | 137 | "title": "Data Observatory", | ||
138 | "type": "organization" | 138 | "type": "organization" | ||
139 | }, | 139 | }, | ||
140 | "owner_org": "af066186-a0e3-486a-9c7a-d5450fb9a09a", | 140 | "owner_org": "af066186-a0e3-486a-9c7a-d5450fb9a09a", | ||
141 | "private": false, | 141 | "private": false, | ||
142 | "relationships_as_object": [], | 142 | "relationships_as_object": [], | ||
143 | "relationships_as_subject": [], | 143 | "relationships_as_subject": [], | ||
144 | "resources": [ | 144 | "resources": [ | ||
145 | { | 145 | { | ||
146 | "cache_last_updated": null, | 146 | "cache_last_updated": null, | ||
147 | "cache_url": null, | 147 | "cache_url": null, | ||
148 | "created": "2023-06-09T16:16:56.543018", | 148 | "created": "2023-06-09T16:16:56.543018", | ||
149 | "description": null, | 149 | "description": null, | ||
150 | "format": "URL", | 150 | "format": "URL", | ||
151 | "hash": "", | 151 | "hash": "", | ||
152 | "id": "373fd208-f971-40b6-9139-02c0c4485a90", | 152 | "id": "373fd208-f971-40b6-9139-02c0c4485a90", | ||
153 | "last_modified": null, | 153 | "last_modified": null, | ||
154 | "metadata_modified": "2023-06-09T16:16:56.533242", | 154 | "metadata_modified": "2023-06-09T16:16:56.533242", | ||
155 | "mimetype": null, | 155 | "mimetype": null, | ||
156 | "mimetype_inner": null, | 156 | "mimetype_inner": null, | ||
157 | "name": "Estimation of Foliar Carotenoid Content Using | 157 | "name": "Estimation of Foliar Carotenoid Content Using | ||
158 | Spectroscopy Wavelet-Based Vegetation Indices", | 158 | Spectroscopy Wavelet-Based Vegetation Indices", | ||
159 | "package_id": "4d43f20c-19b8-4a13-b9b0-76dce6d2fd38", | 159 | "package_id": "4d43f20c-19b8-4a13-b9b0-76dce6d2fd38", | ||
160 | "position": 0, | 160 | "position": 0, | ||
161 | "resource_type": null, | 161 | "resource_type": null, | ||
162 | "size": null, | 162 | "size": null, | ||
163 | "state": "active", | 163 | "state": "active", | ||
164 | "url": "https://ieeexplore.ieee.org/document/10017254", | 164 | "url": "https://ieeexplore.ieee.org/document/10017254", | ||
165 | "url_type": null | 165 | "url_type": null | ||
166 | } | 166 | } | ||
167 | ], | 167 | ], | ||
168 | "state": "active", | 168 | "state": "active", | ||
169 | "tags": [], | 169 | "tags": [], | ||
170 | "title": "Estimation of Foliar Carotenoid Content Using Spectroscopy | 170 | "title": "Estimation of Foliar Carotenoid Content Using Spectroscopy | ||
171 | Wavelet-Based Vegetation Indices", | 171 | Wavelet-Based Vegetation Indices", | ||
172 | "type": "dataset", | 172 | "type": "dataset", | ||
173 | "url": "", | 173 | "url": "", | ||
174 | "version": "1.0" | 174 | "version": "1.0" | ||
175 | } | 175 | } |