f | { | f | { |
| "author": "name:Lopatin, Javier~~creator_name_type::tba", | | "author": "name:Lopatin, Javier~~creator_name_type::tba", |
| "author_email": "", | | "author_email": "", |
| "creator_user_id": "d5b810eb-d375-4f74-b86f-92d03daa9f84", | | "creator_user_id": "d5b810eb-d375-4f74-b86f-92d03daa9f84", |
| "extras": [ | | "extras": [ |
| { | | { |
| "key": "alternate_identifiers", | | "key": "alternate_identifiers", |
| "value": "" | | "value": "" |
| }, | | }, |
| { | | { |
| "key": "dates", | | "key": "dates", |
| "value": "date:2023-01-16~~date_information::unkn" | | "value": "date:2023-01-16~~date_information::unkn" |
| }, | | }, |
| { | | { |
| "key": "formats", | | "key": "formats", |
| "value": "format:.pdf" | | "value": "format:.pdf" |
| }, | | }, |
| { | | { |
| "key": "funding_references", | | "key": "funding_references", |
| "value": "" | | "value": "" |
| }, | | }, |
| { | | { |
| "key": "geo_locations", | | "key": "geo_locations", |
| "value": "" | | "value": "" |
| }, | | }, |
| { | | { |
| "key": "related_identifiers", | | "key": "related_identifiers", |
| "value": "" | | "value": "" |
| }, | | }, |
| { | | { |
| "key": "sizes", | | "key": "sizes", |
| "value": "size:-1~~unit:pages" | | "value": "size:-1~~unit:pages" |
| }, | | }, |
| { | | { |
| "key": "subjects", | | "key": "subjects", |
| "value": "subject_scheme:Continuous wavelet transforms; CWT | | "value": "subject_scheme:Continuous wavelet transforms; CWT |
| mother families~~value_uri::unkn" | | mother families~~value_uri::unkn" |
| }, | | }, |
| { | | { |
| "key": "titles", | | "key": "titles", |
| "value": "name:Estimation of Foliar Carotenoid Content Using | | "value": "name:Estimation of Foliar Carotenoid Content Using |
| Spectroscopy Wavelet-Based Vegetation | | Spectroscopy Wavelet-Based Vegetation |
n | Indices~~title_type::unkn~~language::unav" | n | Indices~~title_type::unkn~~language::en||name:Estimaci\u00f3n del |
| | | contenido de carotenoides foliares mediante \u00edndices de |
| | | vegetaci\u00f3n basados \u200b\u200ben ondas |
| | | espectrosc\u00f3picas~~title_type::unkn~~language::es" |
| } | | } |
| ], | | ], |
| "groups": [ | | "groups": [ |
| { | | { |
| "description": "", | | "description": "", |
| "display_name": "Medio Ambiente", | | "display_name": "Medio Ambiente", |
| "id": "b964b2f4-dc03-40fc-b2a3-bf8c6362fd29", | | "id": "b964b2f4-dc03-40fc-b2a3-bf8c6362fd29", |
| "image_display_url": | | "image_display_url": |
| ://dataobservatory.net/images/categories/500x500-medio-ambiente.webp", | | ://dataobservatory.net/images/categories/500x500-medio-ambiente.webp", |
| "name": "medio-ambiente", | | "name": "medio-ambiente", |
| "title": "Medio Ambiente" | | "title": "Medio Ambiente" |
| }, | | }, |
| { | | { |
| "description": "", | | "description": "", |
| "display_name": "Observaci\u00f3n de la Tierra", | | "display_name": "Observaci\u00f3n de la Tierra", |
| "id": "f1db6d41-28da-4f0f-9f35-1b9f8004b0ee", | | "id": "f1db6d41-28da-4f0f-9f35-1b9f8004b0ee", |
| "image_display_url": | | "image_display_url": |
| ataobservatory.net/images/categories/500x500-observacion-tierra.webp", | | ataobservatory.net/images/categories/500x500-observacion-tierra.webp", |
| "name": "observacion-de-la-tierra", | | "name": "observacion-de-la-tierra", |
| "title": "Observaci\u00f3n de la Tierra" | | "title": "Observaci\u00f3n de la Tierra" |
| } | | } |
| ], | | ], |
| "id": "4d43f20c-19b8-4a13-b9b0-76dce6d2fd38", | | "id": "4d43f20c-19b8-4a13-b9b0-76dce6d2fd38", |
| "isopen": false, | | "isopen": false, |
| "license_id": "rights:CC-BY", | | "license_id": "rights:CC-BY", |
| "license_title": "rights:CC-BY", | | "license_title": "rights:CC-BY", |
| "maintainer": "name:Lopatin, Javier~~creator_name_type::tba", | | "maintainer": "name:Lopatin, Javier~~creator_name_type::tba", |
| "maintainer_email": "do-catalog@dataobservatory.net", | | "maintainer_email": "do-catalog@dataobservatory.net", |
| "metadata_created": "2023-06-09T16:16:56.535770", | | "metadata_created": "2023-06-09T16:16:56.535770", |
n | "metadata_modified": "2023-06-09T16:56:55.890826", | n | "metadata_modified": "2023-10-31T20:16:29.286676", |
| "name": | | "name": |
| arotenoid_content_using_spectroscopy_waveletbased_vegetation_indices", | | arotenoid_content_using_spectroscopy_waveletbased_vegetation_indices", |
| "notes": "description:The plant carotenoid (Car) content plays a | | "notes": "description:The plant carotenoid (Car) content plays a |
| crucial role in the xanthophyll cycle and provides essential | | crucial role in the xanthophyll cycle and provides essential |
| information on the physiological adaptations of plants to | | information on the physiological adaptations of plants to |
| environmental stress. Spectroscopy data are essential for the | | environmental stress. Spectroscopy data are essential for the |
| nondestructive prediction of Car and other traits. However, Car | | nondestructive prediction of Car and other traits. However, Car |
| content estimation is still behind in terms of accuracy compared to | | content estimation is still behind in terms of accuracy compared to |
| other pigments, such as chlorophyll (Chl). Here, I examined the | | other pigments, such as chlorophyll (Chl). Here, I examined the |
| potential of using the continuous wavelet transform (CWT) on leaf | | potential of using the continuous wavelet transform (CWT) on leaf |
| reflectance data to create vegetation indices (VIs). I compared six | | reflectance data to create vegetation indices (VIs). I compared six |
| CWT mother families and six scales and selected the best overall | | CWT mother families and six scales and selected the best overall |
| dataset using random forest (RF) regressions. Using a brute-force | | dataset using random forest (RF) regressions. Using a brute-force |
| approach, I created wavelet-based VIs on the best mother family and | | approach, I created wavelet-based VIs on the best mother family and |
| compared them against established Car reflectance-based VIs. I found | | compared them against established Car reflectance-based VIs. I found |
| that wavelet-based indices have high linear sensitivity to the Car | | that wavelet-based indices have high linear sensitivity to the Car |
| content, contrary to typical nonlinear relationships depicted by the | | content, contrary to typical nonlinear relationships depicted by the |
| reflectance-based VIs. These relations were theoretically contrasted | | reflectance-based VIs. These relations were theoretically contrasted |
| with the synthetic data created using the PROSPECT-D radiative | | with the synthetic data created using the PROSPECT-D radiative |
| transfer model. However, the best selection of wavelength bands in | | transfer model. However, the best selection of wavelength bands in |
| wavelet-based VIs varies greatly depending on the spectral | | wavelet-based VIs varies greatly depending on the spectral |
| characteristics of the input data before the | | characteristics of the input data before the |
t | | t | transformation.~~language::en||description: El contenido de |
| | | carotenoides (Car) de las plantas juega un papel crucial en el ciclo |
| | | de las xantofilas y proporciona informaci\u00f3n esencial sobre las |
| | | adaptaciones fisiol\u00f3gicas de las plantas al estr\u00e9s |
| | | ambiental. Los datos de espectroscopia son esenciales para la |
| | | predicci\u00f3n no destructiva de Car y otros rasgos. Sin embargo, la |
| | | estimaci\u00f3n del contenido de Car a\u00fan est\u00e1 por |
| | | detr\u00e1s en t\u00e9rminos de precisi\u00f3n en comparaci\u00f3n con |
| | | otros pigmentos, como la clorofila (Chl). Aqu\u00ed, examin\u00e9 el |
| | | potencial de utilizar la transformada wavelet continua (CWT) en datos |
| | | de reflectancia de hojas para crear \u00edndices de vegetaci\u00f3n |
| | | (VI). Compar\u00e9 seis familias madre de CWT y seis escalas y |
| | | seleccion\u00e9 el mejor conjunto de datos general utilizando |
| | | regresiones de bosque aleatorio (RF). Utilizando un enfoque de fuerza |
| | | bruta, cre\u00e9 VI basados \u200b\u200ben wavelets en la mejor |
| | | familia madre y los compar\u00e9 con VI establecidos basados |
| | | \u200b\u200ben la reflectancia del autom\u00f3vil. Descubr\u00ed que |
| | | los \u00edndices basados \u200b\u200ben wavelets tienen una alta |
| | | sensibilidad lineal al contenido de Car, contrariamente a las |
| | | relaciones no lineales t\u00edpicas representadas por los VI basados |
| | | \u200b\u200ben reflectancia. Estas relaciones se contrastaron |
| | | te\u00f3ricamente con los datos sint\u00e9ticos creados utilizando el |
| | | modelo de transferencia radiativa PROSPECT-D. Sin embargo, la mejor |
| | | selecci\u00f3n de bandas de longitud de onda en VI basados |
| | | \u200b\u200ben wavelets var\u00eda mucho dependiendo de las |
| | | caracter\u00edsticas espectrales de los datos de entrada antes de la |
| transformation.~~language::none", | | transformaci\u00f3n. ~~language::es", |
| "num_resources": 1, | | "num_resources": 1, |
| "num_tags": 0, | | "num_tags": 0, |
| "organization": { | | "organization": { |
| "approval_status": "approved", | | "approval_status": "approved", |
| "created": "2023-02-22T14:41:33.910697", | | "created": "2023-02-22T14:41:33.910697", |
| "description": "", | | "description": "", |
| "id": "af066186-a0e3-486a-9c7a-d5450fb9a09a", | | "id": "af066186-a0e3-486a-9c7a-d5450fb9a09a", |
| "image_url": "https://dataobservatory.net/images/do.png", | | "image_url": "https://dataobservatory.net/images/do.png", |
| "is_organization": true, | | "is_organization": true, |
| "name": "data-observatory", | | "name": "data-observatory", |
| "state": "active", | | "state": "active", |
| "title": "Data Observatory", | | "title": "Data Observatory", |
| "type": "organization" | | "type": "organization" |
| }, | | }, |
| "owner_org": "af066186-a0e3-486a-9c7a-d5450fb9a09a", | | "owner_org": "af066186-a0e3-486a-9c7a-d5450fb9a09a", |
| "private": false, | | "private": false, |
| "relationships_as_object": [], | | "relationships_as_object": [], |
| "relationships_as_subject": [], | | "relationships_as_subject": [], |
| "resources": [ | | "resources": [ |
| { | | { |
| "cache_last_updated": null, | | "cache_last_updated": null, |
| "cache_url": null, | | "cache_url": null, |
| "created": "2023-06-09T16:16:56.543018", | | "created": "2023-06-09T16:16:56.543018", |
| "description": null, | | "description": null, |
| "format": "URL", | | "format": "URL", |
| "hash": "", | | "hash": "", |
| "id": "373fd208-f971-40b6-9139-02c0c4485a90", | | "id": "373fd208-f971-40b6-9139-02c0c4485a90", |
| "last_modified": null, | | "last_modified": null, |
| "metadata_modified": "2023-06-09T16:16:56.533242", | | "metadata_modified": "2023-06-09T16:16:56.533242", |
| "mimetype": null, | | "mimetype": null, |
| "mimetype_inner": null, | | "mimetype_inner": null, |
| "name": "Estimation of Foliar Carotenoid Content Using | | "name": "Estimation of Foliar Carotenoid Content Using |
| Spectroscopy Wavelet-Based Vegetation Indices", | | Spectroscopy Wavelet-Based Vegetation Indices", |
| "package_id": "4d43f20c-19b8-4a13-b9b0-76dce6d2fd38", | | "package_id": "4d43f20c-19b8-4a13-b9b0-76dce6d2fd38", |
| "position": 0, | | "position": 0, |
| "resource_type": null, | | "resource_type": null, |
| "size": null, | | "size": null, |
| "state": "active", | | "state": "active", |
| "url": "https://ieeexplore.ieee.org/document/10017254", | | "url": "https://ieeexplore.ieee.org/document/10017254", |
| "url_type": null | | "url_type": null |
| } | | } |
| ], | | ], |
| "state": "active", | | "state": "active", |
| "tags": [], | | "tags": [], |
| "title": "Estimation of Foliar Carotenoid Content Using Spectroscopy | | "title": "Estimation of Foliar Carotenoid Content Using Spectroscopy |
| Wavelet-Based Vegetation Indices", | | Wavelet-Based Vegetation Indices", |
| "type": "dataset", | | "type": "dataset", |
| "url": "", | | "url": "", |
| "version": "1.0" | | "version": "1.0" |
| } | | } |